sexta-feira, 29 de março de 2024

Aula 7 - Geradores e Receptores e Falando da Prova

Falaremos sobre Geradores e Receptores, apresentamos a definição, como funciona, curva característica e simbologia de geradores:



Logo após faremos o mesmo com os Receptores:


Logo depois falaremos sobre a prova da próxima semana. Resolveremos vários exercícios sobre a prova.

sexta-feira, 22 de março de 2024

Aula 6 - Exercícios de Sala

1> Diferencie Gerador, Receptor de Resistor.


2> Determine a Req em cada caso abaixo:









3> Determine a Req:


Aula 6 - Circuitos - Parte 1

Em nossa aula dessa semana, falaremos de Potência e Resistência. Logo depois começaremos a falar de associação em série, paralelo e mista. Veremos, também, sobre curto circuito. Resolveremos vários exercícios sobre esse assunto. 



Associação em Série:


Req = R1 + R2 + R3


Associação em Paralelo:





Falaremos sobre Geradores e Receptores, apresentamos a definição, como funciona, curva característica e simbologia de geradores:



Logo após faremos o mesmo com os Receptores:


Aula Introdutória sobre o assunto do Telecurso 2000 (ajudando a entender melhor)




Arco Elétrico


Preparação para Prova - Parte 2

Exercício Importante para Prova - Lei de Gauss



sexta-feira, 15 de março de 2024

Preparação para Prova - Parte 1

 Exercício 1 => Lei de Coulomb => Equilíbrio de Forças


Aula 5 - Exercícios de Sala

1> Durante os 4,0 min em que uma corrente de 5,0 A atravessa um fio, (a) quantos coulombs e (b) quantos elétrons passam por uma seção reta do fio?

2> Um ser humano pode morrer se uma corrente elétrica da ordem de 50 mA passar perto do coração. Um eletricista trabalha com as mãos suadas, o que reduz consideravelmente a resistência da pele, segura dois fios desencapados, um em cada mão. Se a resistência do corpo do eletricista é de 2000 Ohms, qual é a menor diferença de potencial entre os fios capaz de produzir um choque mortal?

3> Um fio elétrico tem 1,0 mm de diâmetro, 2,0 m de comprimento e uma resistência de 50 mOhm. Qual é a resistividade do material do fio?

4> Um fio tem uma resistência R. Qual é a resistência de um segundo fio, feito do mesmo material, com metade do comprimento e metade do diâmetro?

5> Um fio com uma resistência de 6 Ohms é esticado de tal forma que o comprimento se torna três vezes maior que o inicial. Determine a resistência do fio após a operação, supondo que a resistividade e a densidade do material permaneçam as mesmas.

6> Uma lâmpada de 100 W é ligada a uma tomada de parede de 120 V. (a) Quanto custa deixar a lâmpada ligada continuamente durante um mês de 31 dias? Suponha que o preço da energia elétrica é de $0,06/ kWh. (b) Qual é a resistência da lâmpada? (c) Qual é a corrente na lâmpada?

Aula 5 - Corrente Elétrica

Começaremos resolvendo exercício de potencial de várias cargas. Logo depois falaremos do conceito e definição da corrente elétrica.



Após essa discussão veremos como calcular e o seu sentido. Veremos também que existem tipos diferentes de correntes.


Falaremos do conceito de Potência Elétrica e energia consumida. Logo após resolveremos vários exercícios.

Discutiremos também sobre Resistência, Resistividade e Condutividade.


Falaremos da Lei de Ohm e da sua importância.



Relacionaremos Potência com Resistência e resolveremos vários problemas.



Universo Mecânico - Bateria

Viagem na Eletricidade


Nossa 5ª Aula:

segunda-feira, 11 de março de 2024

Aula 4 - Exercícios de Sala

1> Uma certa bateria de automóvel de 12 V pode fazer passar uma carga de 84 A.h por um circuito, de um terminal para o outro da bateria. (a) Quantos Coulombs corresponde essa carga? (b) Se toda carga sofre uma variação de potencial elétrico de 12 V, qual a energia envolvida?


2> Na figura abaixo, qual é o potencial elétrico no ponto P devido às quatro partículas, q = 5,00 fC e d = 4 cm?



3> Na figura abaixo, quando um elétron se desloca de A para B ao longo de uma linha de campo elétrico, o campo elétrico realiza um trabalho de 3,94 x 10ˆ-19 J. Qual a diferença de potencial elétrico:
(a) VB - VA;
(b) VC - VA;
(c) VC - VB?

Aula 4 - Grandezas Básicas

Iremos discutir sobre o potencial elétrico. Começaremos pelo conceito de Energia Potencial Elétrica. Veremos que para fornecer energia potencial elétrica para uma carga negativa, devemos colocá-la numa região negativa, pois essa mesma região irá fazer com que essa carga realize trabalho. A expressão da variação da energia potencial igual ao trabalho negativo (usada em Física II) também funciona em eletricidade.


O conceito de potencial elétrico (energia potencial pela carga):

V = Ep/q

Onde V é medido no SI em Volts (homenagem a Alessandro Volta).



Relacionando os dois conceitos e chegaremos numa importante expressão que nos mostra a importância da diferença de potencial na movimentação de carga (estamos no limite da eletrostática para a eletrodinâmica).

W = q (Vf - Vi)

Discutiremos a energia potencial elétrica para um par de cargas (Lembra que usamos U no lugar de Ep):



Mostraremos também como determinar o potencial elétrico de uma carga Pontual (no lugar de d usamos r):

O conceito de Superfícies Equipotenciais:



Potencial Elétrico - Parte 1



Potencial Elétrico - Parte 2




Relâmpagos

 

domingo, 3 de março de 2024

Aula 3 - Exercícios de Sala

1> Na figura abaixo, as quatro partículas são mantidas fixas e têm cargas q1 = q2 = +5e, q3 = +3e e q4 = -12e. A distância d = 5,0 micro m. Qual é o módulo do campo elétrico no ponto P?



2> A superfície quadrada da figura tem 3,2 mm de lado e está imersa em um campo elétrico uniforme de módulo E = 1800 N/C e com linhas de campo fazendo um ângulo de 35º com a normal, como mostra a figura, Tome essa normal como apontando para fora, como se a superfície fosse a tampa da caixa. Calcule o fluxo elétrico através da superfície.


3> Observa-se experimentalmente que o campo elétrico em uma certa região da atmosfera terrestre aponta verticalmente para baixo. A uma altitude de 300 m, o campo tem um módulo de 60,0 N/C; a uma altitude de 200 m, o módulo é 100 N/C. Determine a carga em excesso contida em um cubo com 100 m de aresta e faces horizontais a 200 e 300 m de altitude.

Aula 3 - Campo Elétrico e Lei de Gauss

Em nossa última aula falamos da analogia de campo elétrico e campo gravitacional:


Em nossa aula 3 estaremos discutindo  Linhas de Campo e Lei de Gauss.

Na aula anterior foi apresentado uma analogia entre Campo Elétrico e Campo Gravitacional, chegamos a conclusão que E = F / q (utilizada quando temos a carga de prova). 
Em nossa aula 3 faremos uma longa explicação sobre o vetor Campo Elétrico e concluiremos que campo gerado por carga positiva é de afastamento e campo gerado por carga negativa é de aproximação, em termos de linhas de campo.


O cálculo do campo elétrico de cargas puntiformes:



LEI DE GAUSS

As linhas de campo proposta pelo inglês M. Faraday serviram de apoio para o modelo que temos hoje. Introduziremos o conceito de um vetor área, vetor este que sempre aponta para fora da superfície em estudo. O vetor área existe exatamente para interpretarmos o sentido das linhas e definir se elas vem de cargas positivas ou negativas.

Michael Faraday

Logo temos a Lei de Gauss, utilizando o conceito de fluxo do campo elétrico:





Podemos demonstrar que a Lei de Coulomb está contida na Lei de Gauss, enfatizando a grande importância dessa lei.




Estudo de Caso:



Mais um exercício clássico será apresentado na aula e a resolução dele você pode acompanhar abaixo:



Um pouco de História:


  Nossa 3ª Aula: